Qubino

The INNOVATIVE and SMALLEST
Flush 2 relays

ORDERING CODE	Z-WAVE FREQUENCY
ZMNHBD1	$868,4 \mathrm{MHz}$
ZMNHBD2	$921,4 \mathrm{MHz}$
ZMNHBD3	$908,4 \mathrm{MHz}$
ZMNHBD4	$869,0 \mathrm{MHz}$
ZMNHBD5	$916,0 \mathrm{MHz}$

This Z-Wave module is used for switching on or off two electrical devices (e.g. lights, fans, etc ...). The module can be controlled either through Z-Wave network or through the wall switches
The module is designed to be mounted inside a "flush mounting box", hidden behind a traditional wall switch.
Module measures power consumption of two electrical devices and supports connection of digital temperature sensor. It is designed to act as repeater in order to improve range and stability of Z-wave network.

Supported switches

Module supports mono-stable switches (push button) and bi-stable switches. The module is factory set to operate with bi-stable switches.

Installation

- Before the installation disconnect power supply.
- Connect the module according to electrical diagram
- Locate the antenna far from metal elements (as far as possible)
- Do not shorten the antenna

Danger of electrocution

- Module installation requires a great degree of skill and may be performed only by a qualified and licensed electrician.
- Even when the module is turned off, voltage may be present on its terminals. Any works on configuration changes related to connection mode or load must be always performed by disconnected power supply (disable the fuse).

Note

Do not connect the module to loads exceeding recommended values. Connect the module only in accordance to the below diagrams. Improper connections may be dangerous.

Package contents

- Flush 2 relays

Electrical diagram 230VAC

Notes for the diagram
N Neutral lead
L Live lead
Q1 Output for electrical device no. 1
Q2 Output for electrical device no. 2
12 Input for switch to control electrical device no. 2
11 Input for switch to control electrical device no. 1
TS Terminal for digital temperature sensor (only for Flush 2 relays module compatible digital temperature sensor, which must be ordered separately).

Electrical diagram 24VDC

Notes for the diagram:

N +VDC

-VDC
Q1 Output for electrical device no. 1
Q2 Output for electrical device no. 2
Input for switch to control electrical device no. 2 Input for switch to control electrical device no. 1 TS Terminal for digital temperature sensor (only for Flush 2 relays module compatible digital temperature sensor, which must be ordered separately).

Service button (used to add or remove module from the z-Wave network).

Durability of the device depends on applied load. For resistive load (light bulbs, etc.) and 4A curren consumption of each individual electrical device, the durability exceeds 70.000 switches of each individual electrical device.

Module Inclusion (Adding to Z-Wave

 network)- Connect module to power supply (with temperature sensor connected - if purchased),
- bring module within maximum 1 meter (3 feet) of the main controller,
- enable add/remove mode on main controller,
- auto-inclusion (30 minutes after connected to power supply) or
- press service button \mathbf{S} for more than 2 second or
- press push button I1 three times within 3 s (3 times change switch state within 3 seconds)
NOTE: When connecting temperature sensor to module that has already been included, you have to exclude module first. Connect the sensor and re-include the module.

Module Exclusion/Reset (Removing

 from Z-Wave network)- Connect module to power supply
- bring module within maximum 1 meter (3 feet) of the main controller,
- enable add/remove mode on main controller,
- press service button \mathbf{S} for more than 6 second or
- press push button 11 five times within 3 s (5 times change switch state within 3 seconds) in the first 60 seconds after the module is connected to the power supply.

By this function all parameters of the module are set to default values and own ID is deleted
If service button S is pressed more than 2 and less than 6second module is excluded, but configuration parameters are not set to default values

Association

Association enables Flush 2 relays module to transfer commands inside Z-Wave network directly (without main controller) to other Z-Wave modules.

Associated Groups

Group 1: default reporting group (reserved for the main controller).
Group 2: basic on/off (triggered at change of the output Q1 state and reflecting its state) up to 16 nodes.
Group 3: basic on/off (triggered at change of the output Q2 state and reflecting its state) up to 16 nodes.

Configuration parameters

Parameter no. 1 - Input 1 switch type

Available configuration parameters (data type is 1 Byte DEC):

- default value 1
- 0 mono-stable switch type (push button)

1 bi-stable switch type
Parameter no. 2 - Input 2 switch type
Available configuration parameters (data type is 1 Byte DEC):

- default value 1
- 0 mono-stable switch type (push button)

1 bi-stable switch type
Parameter no. 10-Activate / deactivate functions ALL ON/ALL OFF
Available configuration parameters (data type is 1 Byte DEC):

- default value 255
- 255 - ALL ON active, ALL OFF active
- 0 - ALL ON is not active ALL OFF is not active

1 - ALL ON is not active ALL OFF active
2 - ALL ON active ALL OFF is not active
Flush 2 relays module responds to commands ALL ON ALL OFF that may be sent by the main controller or by other controller belonging to the system.
Parameter no. 11 - Automatic turning off output Q1 after set time
When relay Q1 is ON it goes automatically OFF after time defined by this parameter. Timer is reset to zero each time the module receive ON command regardless from where it comes (push button, associated module, controller,..). Available configuration parameters (data type is 2 Byte DEC):

- default value 0
- 0 - Auto OFF disabled
$1-32535=1$ second $(0,01 \mathrm{~s})-32535$ seconds $(325,35 \mathrm{~s})$ Auto OFF enabled with define time, step is 1 s or 10 ms according to parameter nr .15
Parameter no. 12 - Automatic turning on output Q1 after set time
When relay Q1 is OFF it goes automatically ON after time defined by this parameter. Timer is reset to zero each time the module receive OFF command regardless from where it comes (push button, associated module, controller,..). Available configuration parameters (data type is 2 Byte DEC):
- default value 0
- 0 - Auto ON disabled
$1-32535=1$ second $(0,01 \mathrm{~s})-32536$ seconds $(325,35 \mathrm{~s})$ Auto ON enabled with define time, step is 1s or 10 ms according to parameter nr. 15 Parameter no. 13-Automatic turning off output Q2 after set time
When relay Q2 is ON it goes automatically OFF after time defined by this parameter. Timer is reset to zero each time the module receive ON command regardless from where it comes (push button, associated module, controller,..). Available configuration parameters (data ype is 2 Byte DEC):
- default value 0
- 0 - Auto OFF disabled
- $1-32535=1$ second $(0,01 \mathrm{~s})-32535$ seconds $(325,35 \mathrm{~s})$ Auto OFF enabled with define time, step is 1 s or 10 ms according to parameter nr .15
Parameter no. 14-Automatic turning on output Q2 fter set time
When relay Q2 is OFF it goes automatically ON after time defined by this parameter. Timer is reset to zero each time the module receive OFF command regardless from where it comes (push button, associated module, controller,...). Available configuration parameters (data type is 2 Byte DEC):
- default value 0
- 0 - Auto ON disabled
- $1-32535=1$ second $(0,01 \mathrm{~s})-32536$ seconds $(325,35 \mathrm{~s})$ Auto ON enabled with define time, step is 1s or 10 ms according to parameter nr. 15
Parameter no. 15 - Automatic turning off / on seconds or milliseconds selection
Available configuration parameters (data type is 1 Byte DEC):
- default value 0
- 0 - seconds selected

1 - milliseconds selected
NOTE: Parameter is valid for both outputs Q1, Q2 and is he same for turning off or on.

Parameter no. $\mathbf{3 0}$ - Saving the state of the relays Q and Q2 after a power failure
Available configuration parameters (data type is 1 Byte DEC):

- default value 0
- 0 - Flush 2 relays module saves its state before power failure (it returns to the last position saved before a power failure)
- 1 - Flush 2 relays module does not save the state after a power failure, it returns to "off" position. Parameter no. 40 - Power reporting in Watts on power

change for Q1

Set value means percentage, set value from $0-100=$
$0 \%-100 \%$. Available configuration parameters (data type
is 1 Byte DEC):

- default value $10=10 \%$
- 0 - reporting disabled
- $1-100=1 \%-100 \%$ Reporting enabled. Powe report is send (push) only when actual power in Watts in real time changes for more than se percentage comparing to previous actual power in Watts, step is 1%.
NOTE: If power changed is less than 1 W , the report is not send (pushed), independent of percentage set.
Parameter no. 41 - Power reporting in Watts on powe change for Q2
Set value means percentage, set value from $0-100=$
$0 \%-100 \%$. Available configuration parameters (data type is 1 Byte DEC):
- default value $10=10 \%$
- 0 - reporting disabled
- $1-100=1 \%-100 \%$ Reporting enabled. Powe report is send (push) only when actual power in Watts in real time changes for more than set percentage comparing to previous actual power in Watts, step is 1%.
NOTE: If power changed is less than 1 W , the report is not send (pushed), independent of percentage set.
Parameter no. 42 - Power reporting in Watts by time interval for Q1
Set value means time interval ($0-32535$) in seconds, when power report is send. Available configuration parameters (data type is 2 Byte DEC)
- default value $300=300$ s
- 0 - reporting disabled
- $1-32535=1$ second -32535 seconds. Reporting enabled, Power report is send with time interval set by entered value.
Parameter no. 43 - Power reporting in Watts by time interval for Q2
Set value means time interval $(0-32535)$ in seconds, when power report is send. Available configuration
parameters (data type is 2 Byte DEC):
- default value $300=300$ s
- 0 - reporting disabled
- $1-32535=1$ second -32535 seconds. Reporting enabled, Power report is send with time interval set by entered value.
Parameter no. 63-Output Q1 Switch selection
Set value means the type of the device that is connected
to the output. The device type can be normally open (NO) or normally close (NC). Available configuration parameters (data type is 1 Byte DEC):
- default value 0
- $0-$ When system is turned off the output is $0 \mathrm{~V}(\mathrm{NC})$. 1 - When system is turned off the output is 230 V or 24 V (NO).
Parameter no. 64 - Output Q2 Switch selection
Set value means the type of the device that is connected to the output. The device type can be normally open (NO) or normally close (NC). Available configuration parameters (data type is 1 Byte DEC):
- default value 0
- 0 - When system is turned off the output is $\mathrm{OV}(\mathrm{NC})$
- 1 - When system is turned off the output is 230 V or 24 V (NO).
Parameter no. 110 - Temperature sensor offset

settings

Set value result in adding or subtracting that value to actual measured value by sensor. Available contiguration parameters (data type is 2 Byte DEC):

- default value 32536
- 32536 - offset is 0.0 C
- From 1 to 1000 - value from $0.1^{\circ} \mathrm{C}$ to $10.0^{\circ} \mathrm{C}$ is added to actual measured temperature.

arameter no. 120 - Digital temperature sens

 reportingdigital temperature sensor is connected, module reports measured temperature on temperature change defined by this parameter. Available configuration parameters (data type is 1 Byte DEC)

- default value $5=0,5^{\circ} \mathrm{C}$
- 0 - Reporting disabled
- $1-127=0,1^{\circ} \mathrm{C}-12,7^{\circ} \mathrm{C}$, step is $0,1^{\circ} \mathrm{C}$

Technical Specifications

Power supply	110-230 VAC $\pm 10 \%$ $50 / 60 \mathrm{~Hz}, 24-30 \mathrm{VDC}$
Rated load current of AC output (resistive load)*	$2 \times 4 \mathrm{~A} / 230 \mathrm{VAC}$
Rated load current of DC output (resistive load)	$2 \times 4 \mathrm{~A} / 30 \mathrm{VDC}$
Output circuit power of AC output (resistive load)	2 X 920 W (230VAC)
Output circuit power of DC output (resistive load)	$2 \mathrm{X} \mathrm{96W} \mathrm{(24VDC)}$
Power measurement accuracy	$\begin{aligned} & P=0-200 \mathrm{~W},+1-2 \mathrm{~W} \\ & \mathrm{P}>200 \mathrm{~W},+1-3 \% \end{aligned}$
Digital temperature sensor range (sensor must be ordered separately)	$-50 \sim+125^{\circ} \mathrm{C}$
Operation temperature	$-10 \sim+40^{\circ} \mathrm{C}$
Distance	up to 30 m indoors (depending on building materials)
Dimensions (WxHxD) (package)	$\begin{gathered} 41,8 \times 36,8 \times 16,9 \mathrm{~mm} \\ (79 \times 52 \times 22) \end{gathered}$
Weight (Brutto with package)	28 g (34g)
Electricity consumption	0,4W
For installation in boxes	$\varnothing \geq 60 \mathrm{~mm}$ or 2M
Switching	Relay (2x)

In case of load other than resistive, pay attention to the value of $\cos \varphi$ and if necessary apply load lower than the ated load. Max current for $\cos \varphi=0,4$ is 2 A at 250 VAC , $3 A$ at $24 V D C$.

-Wave Device Class:

ZWAVEPLUS_INFO_REPORT_ROLE_TYPE_SLAVE_A
WAYS_ON
GENERIC_TYPE_SWITCH BINARY
SPECIFIC TYPE POWER STRIP
Z-Wave Supported Command Classes
COMMAND_CLASS_ZWAVEPLUS_INFO
COMMAND_CLASS_VERSION_V2
COMMAND_CLASS_MANUFACTURER_SPECIFIC
COMMAND_CLASS_DEVICE_RESET_LOCALLY
COMMAND CLASS POWERLEVEL
COMMAND CLASS BASIC
COMMAND_CLASS_SWITCH_ALL
COMMAND_CLASS_SWITCH_BINARY
COMMAND_CLASS_METER_V4
COMMAND CLASS SENSOR MULTILEVEL V7 COMMAND CLASS MULTI CHANNEL V4
COMMAND_CLASS_ASSOCIATION V2
COMMAND_CLASS_MULTI_CHANNEL_ASSOCIATION
_V3
COMMAND_CLASS_ASSOCIATION_GRP_INFO_V COMMAND_CLASS_CONFIGURATION
COMMAND_CLASS_MARK
COMMAND_CLASS BASIC

Endpoint 1

COMMAND_CLASS_ZWAVEPLUS_INFO COMMAND_CLASS_VERSION_V2 COMMAND_CLASS_MANUFACTURER_SPECIFIC COMMAND_CLASS_DEVICE_RESET_LOCALLY COMMAND_CLASS_POWERLEVEL COMMAND CLASS BASIC
COMMAND_CLASS_SWITCH_ALL COMMAND_CLASS_SWITCH_BINARY COMMAND_CLASS_METER_V4 COMMAND CLASS SENSOR MULTILEVEL V7 COMMAND_CLASS_ASSOCIATION_V2 COMMAND CLASS ASSOCIATION GRP INFO V2 COMMAND_CLASS_CONFIGURATION COMMAND_CLASS_MARK
COMMAND_CLASS_BASIC

Endpoint 2 (11):

Device Class:
GENERIC TYPE SWITCH BINARY SPECIFIC TYPE POWER SWITCH BINARY

Command Classes

COMMAND_CLASS_ZWAVEPLUS_INFO
COMMAND_CLASS_SWITCH_ALL
COMMAND_CLASS_VERSION_V2 COMMAND CLASS BASIC
COMMAND_CLASS_METER_V4
COMMAND_CLASS_SWITCH_BINARY COMMAND_CLASS_ASSOCIATION_GRP_INFO_V2 COMMAND_CLASS_MARK
COMMAND_CLASS_BASIC
Endpoint 3 (I2):
Device Class:
GENERIC_TYPE_SWITCH_BINARY SPECIFIC_TYPE_POWER_SWITCH_BINARY Command Classes:
COMMAND_CLASS_ZWAVEPLUS_INFO COMMAND_CLASS_SWITCH_ALL COMMAND CLASS VERSION V2 COMMAND_CLASS_BASIC COMMAND_CLASS_METER_V4
COMMAND_CLASS_SWITCH_BINARY
COMMAND_CLASS_ASSOCIATION_GRP_INFO_V COMMAND CLASS MARK
COMMAND_CLASS_BASIC

NOTE: The above list is valid for the product with temperature sensor connected to TS terminal. In case the
sensor is not connected then the following command lass is not supported:
COMMAND_CLASS_SENSOR_MULTILEVEL_V7
This product can be included and operated in any
Z-Wave network with other Z-Wave certified devices from any other manufacturers. All constantly powered nodes in the same network will act as repeaters regardless of the vendor in order to increase reliability of the network.

Important disclaimer

Z-Wave wireless communication is inherently not always 100% reliable, and as such, this product should not be used in situations in which life and/or valuables are solely dependent on its function.

Warning!

Do dispose of electrical appliances as unsorted municipal waste, use separate collection facilities
Contact your local government for information regarding he collection systems available. If electrical appliances are disposed of in landfills or dumps, hazardous substances can leak into the groundwater and get into the food chain, damaging your health and well-being. When replacing old appliances with new once, the retailer is legally obligated to take back your old appliance for disposal at least for free of charge.

This user manual is subject to change and improvement without notice

оте

ser manual is valid for module with SW version S1 (SW version is part of P / N)!
Example: P/N: ZMNHBDx H1 $\underline{\mathbf{S 1}^{1}} \mathbf{P 1}$

Qubino

Goap d.o.o. Nova Gorica
Ulica Klementa Juga 007
5250 Solkan
Slovenia
E-mail: info@qubino.com Tel: +38653359500 Web: www.qubino.com

"d

Date: 04.06.2015
Document: Qubino_Flush 2 relays PLUS user maual_V1.0_eng

